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Lecture overview

1) General about energy and mass transfer
 Earlier picture, current research

 Main point in observations

2) Quantifying energy transfer
 Earlier picture: Proxies, estimates

 NEW: Use simulations!

 NEW: Hysteresis in power input?
 Main point in simulations



Nomenclature and definitions

• Coordinate system:
– X towards Sun, Z usually

towards magnetic pole (North
Hem.), Y completes

• IMF: Interplanetary Magnetic
Field
– Solar magnetic field carried by

solar plasma
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Z

Y
X

dawn dusk



Motivation

• Solar energy fuels all
dynamical features in near-
Earth space

• Energy from
– Reconnection (Dungey, 1961)

• Details: next lecture

– Viscous processes at
magnetopause (Axford&Hines,
1961)

• Relative contributions
(estimated) ~90%/10%
(Kamide&Baumjohann, 1993)

Photo by Jouni Jussila



Anecdote:
Reconnection vs. viscous interaction

• Both start convection,
philosophy different

• Reconnection:
– Solar wind electric field maps

along open field lines to
ionosphere, electric field together
with magnetic field cause field line
motion (~90% of transferred
energy)

• Viscous interaction at m’pause
– Viscous forces drag field lines, field

line motion together with magnetic
field causes electric field over polar
cap (~10% of transferred energy)

After Dungey, 1961



Dungey picture (1961)

• Southward turning starts
energy and mass entry at
magnetopause
– start of global convection
– particle on open field line

falls to closed field lines
(plasma sheet) after tail
reconnection

– acceleration at
reconnection line

• Nightside aurora

After Dungey, 1961



Observations disagree with Dungey

• Plasma sheet is
– Hot (acceleration) but

virtually empty during
southward IMF

– Cold and dense during
northward IMF

• Disagreement with entry
of mass and energy
during southward IMF

• => points to dominant
mass entry during
northward IMF?

• Energy still transfers
during southward IMF!
– E.g., Palmroth et al.,

(2003)

Wing and Newell (2002)
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Mass transfer during northward IMF

• 2 possibilities (at least)
– Behind-cusp reconnection

• Mass enters through open field
line but is not accelerated
earth- or tailward (lack of tail
reconnection)

– Kelvin-Helmholtz instability at
magnetopause

• Fast solar wind flow creates
waves at magnetopause,
waves twine and reconnect

• Relative contributions
unknown
– active research topic
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• 2 possibilities (at least)
– Behind-cusp reconnection

• Mass enters through open field
line but is not accelerated
earth- or tailward (lack of tail
reconnection)

– Kelvin-Helmholtz instability at
magnetopause

• Fast solar wind flow creates
waves at magnetopause,
waves twine and reconnect

• Relative contributions
unknown
– active research topic

Matsumoto&Hoshino (web)



Association to space weather
• Plasma sheet fills during

northward IMF and
accelerates during
southward IMF

• The more there is plasma in
the plasma sheet, the
stronger is the ring current
(and hence the magnetic
storm) (Thomsen et al.,
2003)

• The longer is the IMF
northward before storm, the
stronger is the storm?
– This is a research exercise! Aurora borealis at Athens, Greece,

November 2003
© Anthony Ayiomamitis



Quantifying energy transfer

• Vast magnetosphere -
cannot measure energy
transfer globally using
satellites!

• => comparative studies:
correlate estimates of
consumption to solar
wind parameters
– What comes out must

come in

– Equations, estimates
•  ε-parameter

??



Deriving epsilon (Akasofu, 1981)

• Correlate input (solar wind)
to output (magnetospheric
and ionospheric energy
consumption)

• Three output channels: PRC
(ring current; use Dst index),
PJH and PPR (ionospheric
Joule heating and auroral
precipitation; use AE index)

• Find function of solar wind
parameters that correlates
with PRC+PJH+PPR



Epsilon (Akasofu, 1981)

• Justification:
– Solar wind

electromagnetic energy
over a sphere

– Restrict to southward
IMF by sinus function
(“half-wave rectified”)

Bz

By

Bx



• Akasofu (1981)
– Correlate AE and Dst with

solar wind parameters

• Boyle et al. (1997)
– Polar cap potential (often used

to estimate reconnection
efficiency) ∝ sin3(θ/2)

• Kan&Lee (1979)
– Reconnection electric field
∝ sin2(θ/2)

• Gonzalez&Mozer (1974)
– Potential ∝ sin(θ/2)

Angular dependency of proxies
related to energy transfer

Bz
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Typical problems to be solved with
simulations

• Object of study far away, in-situ measurements
not possible
– Astrophysical objects

• In-situ measurements unrealistically expensive,
simulations cheaper

• Phenomenon itself complicated (or global in
nature), in-situ measurements provide only a
glimpse of the situation
– Global energy transfer in the magnetosphere!

• => Need to verify simulation performance



Utilizing global simulations in
quantifying energy transfer

GUMICS-4, FMI’s global MHD
simulation

• Ideal conservative MHD
– Solar wind, magnetosphere

• Boundary and initial
conditions
– Solar wind parameters
– Dipole field
– Ionosphere

• M-I coupling
– To ionosphere: precipitation,

field-aligned currents
– From ionosphere: electric

potential



Energy transfer at
magnetopause: Method

• Required steps using GUMICS-4:
1. Find magnetopause surface from

simulation (map streamlines)

2. Determine surface element normal n
and area dA

3. Find GUMICS-4 total energy K at the
surface location

4. Determine the portion that is going
inward

5. Surface total power: Sum over surface

Y

Z
Palmroth et al., 2003



Accuracy of method

•Streamline-defined surface
 coincides with density gradient
•Surfaces smooth
     -normal vector well-defined
•Total (summed) power vary by
 constant if surface location
 change by 1-2 grid cells

• temporal evolution not affected

XX

Y

ZY

Z



Total energy flux through
magnetopause in GUMICS-4

• Temporal variation
– Similarities to ε
– Differences to ε

• SSC, recovery

• Larger than epsilon
•  ε scaled to output

• Similar results in
other events

April 6-7, 2000, major storm



Angular dependency of energy
transfer at magnetopause

• Which of the powers of sinus
characterize the energy transfer
in simulation?

• 4 synthetic runs with controlled
solar wind
– IMF clock angle rotates 360° with 10°/10min

rate

IMF = 10 nT

Pdyn   = 8 nPa

IMF = 10 nT

Pdyn   = 2 nPa
High
IMF

IMF = 5 nT

Pdyn   = 8 nPa

IMF = 5 nT

Pdyn   = 2 nPa
Small
IMF

High pSmall p



Angular dependency of energy
transfer at magnetopause

• 4 synthetic runs with
controlled solar wind
– IMF clock angle rotates 360°

with 10°/10min rate

IMF = 10 nT

Pdyn   = 8 nPa

IMF = 10 nT

Pdyn   = 2 nPa
High
IMF

IMF = 5 nT

Pdyn   = 8 nPa

IMF = 5 nT

Pdyn   = 2 nPa
Small
IMF

High pSmall p

Negative = inward
sin2(θ/2)



Hysteresis in power input Ps?

• Caused by convection time
delay? NO
– Energy input continues as long

as open field lines convect
towards tail reconnection region

• Caused by method? NO
• Caused by simulation?

Possibly NO
• Unknown phenomenon in

nature? It seems so!
– Poynting vector at

magnetopause seems to be the
cause (largest constituent of K) sin2(θ/2)

Ask printouts of Palmroth et al., (2006)
for further details



Total energy flux has memory?

• Poynting vector S: largest
constituent in total power
– Through surface

• Hysteresis could be in
– Magnitude of B or v
– Angle between v and surface
– Angle between v and B
– Angle between B and surface

• Magnitude of v: No

• Magnitude of B: Yes

• Angle between v and surface:
No

• Angle between v and B: No

• Angle between B and
surface: Yes

• => hysteresis caused by
direction and magnitude of
magnetic field at the surface



Difference of B at symmetric times of
due south field

• Difference large in the magnetosheath

MP

MP

X = 4 X = -7

Run: small IMF, high p

T = symmetry time
τ = 60 min (in figs)
* Indicates mirroring with respect 
   to XZ plane so that structural 
   asymmetry is eliminated



Azimuthal power transfer
distribution

• Integrate power transfer over X,
study as function of clock angle

• Largest power transfer from
sectors aligned with the clock
angle (consistent with Palmroth
et al., 2003)

• Hysteresis is caused by
residual power transfer from
sectors where clock angle has
recently visited
– True for all runs

• No x-dependence found
– Whole surface takes part in

hysteresis
Run: small IMF, high p



Time delays

• Correlate upleg input
power to upleg sin2(θ/2)
– Find delay with which

highest correlation

• Increasing IMF
increases delay

• Increasing dynamic
pressure shortens
delay 20Small IMF Large pdyn

30Large IMF Large pdyn

30Small IMF Small pdyn

40Large IMF Small pdyn

Delay
min

Run params./ Solar
wind

do
w

nl
eg

up
le

g

Θ



What about other drivers?
• IMF rotation counter-

clockwise
– (handedness in Hall

conductivity in ionosphere, co-
rotation electric field)

• Hysteresis appears

• IMF rotation back through
positive By
– Hysteresis appears

• Time delay shorter!

• Second IMF rotation
– Hysteresis disappears during

2nd downleg, but appears
during 2nd upleg!

• Northward IMF “cleans” the
situation

Run:
small IMF,
high p



What about other drivers?
• Twice as fast rotation

– Hysteresis appears

• Twice as slow rotation
– Hysteresis appears

(runs with lower magnetospheric
resolution, hence different surface
location and total area - changes
magnitude of transferred energy)

Run: small IMF, high p



Facts and hints:
• Hysteresis caused by magnitude and direction of magnetic field at the

surface
• Newly activated reconnection tends to eliminate hysteresis

– Time delay shortened during rotation back through positive By
• Points to reconnection processes

• Delay increases with increasing IMF
• Points to reconnection processes

• Delay shortens with increasing pressure
– Large pdyn - smaller surface - shorter time scales

• Clock angle dependency
– Residual transfer from sectors where clock angle recently visited

• Points to reconnection processes

• Difference largest in the magnetosheath
• => Origin in magnetopause or magnetosheath? Both?



Hypotheses
• To alter magnetic field one needs to alter currents

– Which current system has hysteresis?
• Region 1 checked: no cause found
• Plasma sheet system checked: no cause found
• Hysteresis has no x-dependence (it has azimuthal dependence):

current systems often appear within certain x-range => currents not
the cause?

– Inertial ionosphere would be good candidate: How?
• Does reconnection process itself alter magnetic field pattern at

the magnetopause?
– Clock angle dependency suggests this
– Longmore et al. (2006): Reconnection alters magnetosheath

flow pattern
– Coleman (2005): Clock angle is not preserved in

magnetosheath, changes due to reconnection (at least)



Magnetopause reconnection:
Hole in a boat analogy

•Magnetosphere obstacle in
 solar wind
•Reconnection “makes holes”
 to magnetopause surface
•Sheath knows locally where
 holes are - adjusts its flow
 pattern

• But why don’t the
  holes close after large
  energy input?



Possible consequences:
• If energy transfer depends on prior large energy

input
– Correlating e.g., AE and solar wind parameters may

lead to wrong conclusions

• Simulation power output (e.g. in ionosphere)
directly proportional to Ps at magnetopause
– Correlating simulation AE and ε would give a delay that

could be thought of loading-unloading behavior
• BUT: In simulation, energy is processed without delays, so

loading-unloading would be wrong conclusion. On the contrary,
simulation shows that delay comes already from
magnetopause processes!

• Observational verification of hysteresis is difficult!
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