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Introductory words



Size vs importance: Lyrics

All great (both bad and good) things start from something small...

:

Napoleon Stalin Hitler

They were not big men by size and, probably,
not very much impressive by appearance,
BUT, imagine,
how enormous was their
influence on our history...!!!



Size vs importance: Physics

Interplanetary-
Magnétic Field

Solar Wind . -
' Plasma‘ gLt

- . Earth’s

L '\ . Magnetosphere

Although quite a significant progress
has been made, inner magnetosphere
1s definitely worth of studying

Inner magnetosphere
has rather modest size,
with about 10 Re radius,

BUT the significance

of the occurring processes
1s ENORMOUS

PJM Public Service
Step Up Transformer

Severe internal damage caused by
the space storm of 13 March, 1988,




Dynamical inner magnetosphere: Overview

Plasma in magnetosphere:
mainly electrons and ions.

Sources of particles:
solar wind and ionosphere.

------ P Plasma is grouped into different
regions with different densities

and temperatures.

Main regions:

Zf’\- near Earth plasma sheet

(7-10 Re, n=0.1-1 cm3, T=5 keV)
- field-aligned currents (~ 10% A)
- ring current (20-300 keV)

- plasmasphere (<4 Re, 10° cm=3, 1 eV) - radiation belts (up to MeVs) (2-7 Re)
- plasmapause (sharp at 4 Re, drop to 1 cm-?)



Dynamical inner magnetosphere: Storms and substorms

The magnetosphere changes in a wide range of spatial and temporal scales.

Two characteristic dynamic processes

-account for most of the energy, momentum and plasma transport

- both from solar wind into the magnetosphere
- within the magnetosphere -- ionosphere system.

Magnetic storms

(several per month, associated with large

disturbances in the solar wind caused by solar eruptive events)
- lasting 1-5 days,

- ring current strongly enhanced,

- surface magnetic field at equator decreased up to 300 nT,

- significant auroral activity is observed.

Magnetospheric substorms

(daily, under regular solar wind conditions)

- lasting 1-3 hours,

- injection of energetic particles into the inner magnetosphere,
- global reconfiguration of the magnetospheric magnetic field,
- intense auroral activity.
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Magnetic storms, event overview

May 1-7, 1998 storm event overview Initiated from extended period of solar
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Magnetic storms, magnetospheric response
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Magnetospheric substorms
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Lecture logic

Charged particles move under Lorentz force in variable magnetic and electric fields.

Magnetic field models:
- accuracy and applicability for disturbed conditions are open questions.

Electric field models:

- observations are much fewer;

- electric field nature is still an open question;

- separation between electric fields of different scales is an open question;

- no comprehensive models exist for smaller-scale fields and for distrubed conditions.

Most important large-scale current system in the inner magnetosphere: ring current.

- prediction of temporal changes in ring current - efforts in research on space weather;

- processes of ring current formation and development during storms are far from being
fully understood;

- relative importance of large-scale and smaller scale electric fields in energization and
transport of 1ons into the ring current is still an open question.

In this lecture these open questions will be addressed by using extensively the existing

multi-satellite data sets as well as ground-based measurements and modern theoretical models.



Magnetospheric magnetic field modelling



Magnetospheric magnetic field modelling:
Global and event-oriented

Global magnetospheric magnetic field models

- Most widely used (Tsyganenko [1987, 1989], Tsyganenko [1995])
Good representation of average magnetospheric configuration,
fine structure of magnetic field during substorms and large magnetic field changes
during storms were not accounted for.
- Storm-time models (Alexeev et al. [1996], Tsyganenko [2002])
model parameters for current systems fitted to entire data set,
model magnetic field defined by assumed dependence on input parameters.

Event-oriented magnetospheric magnetic field models

- An accurate representation of magnetospheric configuration is of key importance
for a specific event

- Study the evolution of different current systems during different storms
and their relative contribution to Dst

Ganushkina et al., JGR, 2002, Ganushkina et al., AnnGeo, 2004



Storm-time magnetic field modelling: Ring current representation

Symmetric ring current = eastward + westward:

Rey —Roeast ) Ry —Rowest)
J(RaB/BO)SYM :_JOeast ex[{_(eq();am) ](B/BO)A/2 +J0westex{_( - O;IeSt) }(B/BO)A/Z
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Asymmetric ring current = partial + closing Region 2 field-aligned currents :
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Storm-time magnetic field modelling:
Addition of a new tail current sheet

Global changes:

intensification of the tail current (T89)
as a whole with amplification factor (1+ATS).

Local changes:

Adding a new thin tail current sheet.

Two vector potentials, similar to T89:
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Storm-time magnetic field modelling:
Magnetopause currents

Scaling factor AMP=y3 for the magnetic field of Chapman-Ferraro currents
at magnetopause, determined from solar wind pressure variations Pg:

Bcr = X3BCFT89 % = (Psw /<Psw>)k,k ~1/6.

Parameter R, characteristic scale size of magnetotail, defined by solar wind parameters:

V4
RT — 3ORE T,Shue ]
21 189

30 Rg, - parameter R in T89 Kp=4,

Z1 g, - Magnetopause position given by Shue et al [1998] model
dependent on Py, and IMF Bz at X=-20R;, Y =0,

Z 19 - ‘magnetopause’ position given by T89 Kp= 4 model
at X=-20R;, Y =0.



Event-oriented magnetospheric magnetic field modelling
Baseline model: Tsyganenko T89 Kp=4

Current system | Parameter | Status
Eastward RC | Roeast 2 Re )
Joeast 1.5 nA/nt’
Westward RC | Rowest 2.5—-45Re \ 5=0.8
Jowest 1.5—15 nA/m° A=1
Partial RC Ropart 5-6.5Re
Jopart 0.5 - 7 nA/m’ J
C 1
c From Dst 5=2 tanhM , Dst,=40nT
Tailcumrent  |ATS | 052 2 Dst
Antc 0.1-24
Xlntc -2 Re
X2ntc - 10Re
Do 0.2 Re
lgill?ritzlettsopause AMP From SW AMP = (PSW / <PSW>)kak ~1/6.
RT From SW & IMF Ry =30Rg “1shue
21189

Varying free parameters, we find the set of parameters that gives the best fit between model
and in-situ field observations by GOES 8 and 9, Polar, Geotail and Interball Tail satellites
and Dst (SYM-index) measurements.



Overview of four modelled storm events
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Modelling results: Magnetic field and Dst index (2)
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Model current density for May 4, 1998 storm event

May 4, 1998, jtotal, xy—projections
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Modelling results: Contributions to Dst index
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Magnetospheric models used for comparison

«  TO01 Model (Tsyganenko, JGR, 2002)
Parameterization by vy, Dst, Psw, IMF By, IMF Bz, G1,G2 (history of IMF).

* Event-oriented model G2004 (Ganushkina et al., JGR, 2002; AnnGeo, 2004)

T89+ Storm-time current systems

Kalegaev, Ganushkina et al., AnnGeo, 2005



Overview of two modelled storm events

June 25-26, 1998 October 21-23, 1999
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Modelling results: Magnetic field, TO1

June 25-26, 1998
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Modelling results: Magnetic field, event-oriented, G2004

G2004
June 25-26, 1998 (a) October 21-23, 1999 (b)
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October 22, 1000-2000 UT: Magnetic field during saw-tooth event
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Event-oriented magnetospheric magnetic field modelling:
Advantages and disadvantages

+ Allows to play easily with current systems, their location and parameters, to get better
agreement with data

+ Good representation of smaller scale variations in magnetic field:
substorm-associated, saw-tooth events

+ Good representation of local magnetic field variations (observations at a specific satellite)

To get detailed magnetic field variations for a specific event, time period, magnetospheric
Region = use event-oriented model

- Only for specific events, when magnetic field data are available at least at 3 satellites
in different magnetospheric regions

- Requires some work for determination of model parameters

- Based on T89 version

To get magnetic field quickly, for several storms, over a large region in magnetosphere,
good in average = use TO01s model



Particle transport from the plasma
sheet to the ring current region and
ring current development under the
influence of substorm-associated
electric fields
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Ring current energy density and total energy calculated
from Polar CAMMICE/MICS measurements

GGS POLAR (CAMMICE)
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Contributions to RC energy from protons
with different energy ranges: 27 storms’ statistics

contribution to total energy range, %
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May 1-7, 1998: Storm event overview
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Contributions to RC energy from particles with different
energy ranges: May 1-7, 1998 storm event

1x10" H+— 100
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5 — 0 A low (1-20 keV)
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Days of May, 1998

Storm main phase: main contribution from medium energies (20-80 keV)
Storm recovery phase: main contribution from high energies (80-200 keV)




Particle tracing procedure description

- Drift of protons with 90°+60°pitch angles, 1st and 2nd invariants = const
in time-dependent magnetic and electric fields, drift velocity as sum of ExB and
magnetic (gradient and curvature) drifts
- Maxwellian-type distribution function at R=7 1900-0500 MLT with observed
parameters (<Tps>, Nps)
- Changes in distribution function and flux calculations using Liouville’s theorem
taking into account charge-exchange processes with cross section by
Janev and Smith, 1993 and number density of neutrals by thermosphere model
MSISE 90 (Hedin, 1991)
- Magnetic field models:
- dipole,
- Tsyganenko T89, Kp-dependent
- Tsyganenko storm-time TO1s, Dst, Psw, By, Bz IMF, G2, G3 dependent
-Electric field models:
- Volland-Stern Kp-dependent
- Boyle et al., 1997 polar cap potential applied to Volland-Stern type convection
- Substorm-associated fields:
- electric field pulses similar to Sarris et al., 2002 at substorm onsets,
- magnetic field from pulses




May 2-4, 1998 storm event: Modeling results (1a)

Magnetic field: Tsyganenko T89
Electric field: Kp-dependent Volland-Stern convection electric field

(Dconvection = ARJ/ Sin(¢ o ¢0 )’

y=2,4= 0.04> —kV /R,
1-0.159Kp +0.0093Kp

Boundary condition:
constant plasma sheet number density (Nps=0.4 cm-3) and
average temperature (<Tps>=5 keV)




May 2-4, 1998 storm event: Modeling results (1b)

T89 magnetic field and Kp-dependent Volland-Stern convection electric field,
Nps=0.4 cm=3, <Tps>=5 keV

RC energy, Joule
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May 2-4, 1998 storm event: Modeling results (2a)

Magnetic field: Tsyganenko T89

Electric field: Boyle et al., 1997 polar cap potential dependent on
solar wind and IMF parameters applied to Volland-Stern
convection field

. 2
®=[1.110%V2 11118, sin’| Coer | |S2| R |
2 )| 2 &,

R, =10.47R,

Boundary condition:

plasma sheet number density Nps dependent on solar wind
number density Nsw (Ebihara and Ejiri, 2001),

average temperature <Tps>=5 keV

N, =0.025N,, +0.395




May 2-4, 1998 storm event: Modeling results (2b)

T89 magnetic field and Boyle et al., 1997 polar cap potential dependent on
solar wind and IMF parameters, Nps ~ Nsw, <Tps>= 5 keV

RC energy, Joule
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May 2-4, 1998 storm event: Modeling results (3a)

Magnetic field: Tsyganenko T89

Electric field: Boyle et al., 1997 polar cap potential dependent on
solar wind and IMF parameters applied to Volland-Stern
convection field

Boundary condition:
Nps and <Tps> from LANL MPA data (6.6 Re, 0500-1900 MLT)
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May 2-4, 1998 storm event: Modeling results (3b)

T89 magnetic field and Boyle et al., 1997 polar cap potential dependent on
solar wind and IMF parameters, Nps from LANL MPA measurements

RC energy, Joule
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Electric field pulse model

Time varying fields associated with dipolarization in magnetotail, modeled as
an electromagnetic pulse (Li et al., 1998; Sarris et al., 2002):

e Perturbed fields propagate from tail toward the Earth;

e Time-dependent Gaussian pulse with azimuthal E;

e E propagates radially inward at a decreasing velocity;

e decreases away from midnight.

Time-dependent B from the pulse is calculated by Faraday’s law.

In spherical coordinates (1, 0, @): Ey = —E(1+c; cos(dp— )P exp(— @2)

E=[r—r +v(r)(t—t,)]/d - location of the pulse maximum,
r, determines pulse arrival time

v(r)=a+br - pulse front velocity, d - width of pulse,
¢, , p describe LT dependence of E amplitude, largest at ¢,,,

- delay of pulse from ¢, to other LTs,
ta = (c2R /v, I —cos(d—y) ¢, - delay magnitude, 0

v, - longitudinal propagation speed



Electric and magnetic fields in pulse model

Westward El, mv/n
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May 2-4, 1998 storm event: Modeling results (4a)

Magnetic field: Tsyganenko T89

Electric field: Boyle et al., 1997 polar cap potential dependent on

solar wind and IMF parameters applied to Volland-Stern

convection field
Boundary condition:

Nps and <Tps> from LANL MPA data

Electric field pulses at substorm onsets:

May 2

0520 UT 4 mV/m
0910 UT 4 mV/m
1205 UT 8§ mV/m
1600 UT 6 mV/m

May 3
0500 UT
1200 UT
1800 UT
2030 UT

3 mV/m
3 mV/m
4 mV/m
6 mV/m

May 4

0015 UT
0240 UT
0325 UT
0430 UT
0900 UT

6 mV/m
6 mV/m
8 mV/m
7 mV/m
3 mV/m



May 2-4, 1998 storm event: Ring current energy

RC energy, Joule
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May 2-4, 1998 storm event: Pulse propagation

a_den, kev/m3

a_den, keV,/m3
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May 2-4, 1998 storm event: Energy density maps

e_den, keV/m3
WOg




Transport and acceleration of plasma sheet
protons into the ring current region

- Protons with different energies contribute differently during different storms phases:
Statistics on Polar CAMMICE/MICS data:
- during storm main phase medium energies (30-80 keV) contribute most,
- more than high energies (80-300 keV), during recovery — opposite.

- Right choice of magnetic field model in ring current modelling is important
as much as that of electric field: more realistic model than dipole gives 2 times
SMALLER values of proton RC energy.

- Only implementation of substorm-associated electric fields into particle
tracing provides clear dominance of high energy protons during storm
recovery phase for both modelled storm events.

- Ring current formation during storms is a combination of convection and
inward shifts and energization due to pulsed electric field.



Energy-dispersed structures of ions
in the inner magnetosphere
observed at high- and low-altitude
satellites
(Polar, Interball Auroral ION, Viking,
CLUSTER CIS and Akebono)



Observations of energy-dispersed ion structures
on Polar CAMMICE/MICS
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Nose structures in the inner magnetosphere

» Smith and Hoffman, 1974, Explorer 45:;

“There exist ‘nose’ structures in proton
spectrograms beginning at lower L values
with a flux increase in the energy range
15-20 keV. The flux increase spreads to
both higher and lower energies at larger
L values and remains at high intensity
beyond L=5.3... It always

extends into the plasmapause...”

Spatial structure, not temporal

» Ejiri at al., 1978, 1980, Explorer 45:
time-dependent drift trajectories of 1ons
coming from the near-Earth plasma sheet
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Stationary nose structures: Observations of Interball Auroral ION

INTERBALL-AURORAL ION IKT RAN
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The Interball Auroral probe:
e perigee at 770 km,

e apogee at 20,000 km

* 65 deg inclination

ION instrument:
ion measurements with energies
from 10 eV to 20 keV.
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Stationary nose structures: Conjugate observations by Polar and Interball

INTERBALL-AURORAL TOM IKI RAN  Orbit 1668 Start Time @ 1997/0ct/ 5 6:30: 0
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Stationary nose structure (dashed line) Stationary nose structure in proton energy-tim
in proton energy-time spectrogram spectrogram (count rates)
(energy flux) in the nightside magnetosphere (0000-0030 M
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More than 10 hours for stationary nose
Characteristic energy below 10 keV structure formation



Intense nose structures

: November 3, 1997 event
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Intense nose structures: November 3, 1997 event modeling

November 3, 1997 nose event
characteristic energy: 10 keV
1900 UT, 2210 MLT, Req = 4.7
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Wedge-like structures: Viking observations
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Viking satellite:

» elliptical orbit,
* apogee of 13500 km, perigee of 817 km,
* inclination of 98.8 deg, 262 min period

Positive lon Energy Spectrometer
positive ions with 0.04 -1.25 keV for PISP 1
1.25-40 keV for PISP 2




Wedge-like structures in the inner magnetosphere

A

E Type 1 Type 3
Type 2
- Not many studies on the low-energy (< 1 keV) //\
fine structures in the ring current region: ; ¢
a

* Yamauchi et al., 1996: Viking and Freja data -
wedge-like dispersed 1ons - energy-latitude WEDGE-LIKE DISPERSION

. + Type 1
dispersed structures of trapped sub-keV 1ons; Crypes

© Type 3

o Ebihara et al., 2001: determination of types
of wedge-like structures and modeling.




3 types of wedge-like structures: Viking observations
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3 types of wedge-like structures: Modeling

{a) Type 1 and 2 dispersicns
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Wedge-like structures: Cluster CIS observations
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The 4 Cluster spacecraft: detailed 3D map of magnetosphere:

e elliptical polar orbit
e perigee: 19 000 km, apogee: 119 000 km
e period: 57 hours

CIS (Cluster Ion Spectrometry) experiment:

full 3D ion distributions (about 0 to 40 keV), time resolution of 4 sec
COmposition and DIstribution Function analyser (CIS1/CODIF), mass per charge
composition with 22.5° angular resolution,

Hot Ion Analyser (CIS2/HIA), no mass resolution but angular resolution (5.6°)




Wedge-like structures: Cluster CIS observations
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Wedge-like structures: Modeling of Cluster CIS observations (1)
Type 3 Type 2
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Wedge-like structures: Modeling of Cluster CIS observations (2)
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Type 1

3 i i T Ta i N .zlllll.; i
9 ; | I
51y . _ b A ! II :
i ' ] [E AN R | | ht l ¢ ‘
; l. it ) i
Ahmm 0800 0900 1000
2001 Sep 04
MLT 11.6 12.0 126
ILAT 65.9 BD.9 711
DIST 4.4 41 46
10.0
fn 1.0

0.1

Rgsm,R
# ./results/ o4 R7_3600

1000

COUNTS

Type 1, observed:
0855-0910 UT
60.2-61.8 MLAT
12. MLT

=54

2 injections of 1 hour
duration each 2 hours
apart



Flux
Electron
Log (W)

Flux
Ten
Log (el

T
CLAT
CHMLT
ALT

AKkebono satellite:

Akebono LEP measurements

1997, 01, 07 path:97010721, lep EXOS-D E-t dlagrams ver, etkl 22 Lﬂsl(;milr;?sec)
" .
2_
s
4_
3- 8
2- ¥
21102 21107 71112 21:17 71172 21127 71132 21:37 21142 71147 71:52 21157 22102
57,2 £5.5 1.7 5,7 7.3 6.3 5.2 72.9 70,4 B7.9 65,4 £3.0 60T
18.44 19,05 19,92 21,15 72,69 0.16 100 2.04 2,57 2.95 3.75 3.48 3.66
2974 F708 4404 5055 5650 f185 BEG3 TOBT 7412 T693 910 8064 8155

1997 007 {01/07) 20:00 UT to 1997 007 (01/07) 22:00 LT
I I I I

« elliptical orbit
 with inclination of 75.1 deg. | - 1 f I ]
« initial perigee of 272 km, ' '
 apogee of 10482 km,

e evolution period of 212 min

LEP (Low Energy Particles)

-4 1 n 4 T n

2009 5000 : - /*ﬁé?m
gl:an 1 i

0 } } a } } }

)(/J i {%ﬁiﬁﬁoﬁ

Zos 1R}

Tesn LRE)
-

 electrons, 10 eV-16 keV ' . | l ' [ l “ .

° iOIlS, 13 eV/q-ZO keV/q. 5.0 25 :-:Gj?ﬁe} -25 -50 50 25 }{G;-E‘He} -25 -50



ELE

BLE

ELE

IO

TN

0

0N

Fluz
Electron

Log (e}

ur 121
CLAT 66,7
CMLT 19,73
ALT 4825

doun
up

doun _
L

doun
[Es]

doun _
Be]

doun _
L

doun _
up

doun _
L

doun

1997, 01, 08 path:97010812, lep

12126
0.8
20,81
55833

12:31
T3.6
21.48
BOZ0

12136
.1
22,54
BO66

Akebono LEP measurements
ion drop-off

EXUS D E- t dlagrams

ver etk 1322

'umm-wﬁﬁwmh* —h--—h.-h—r..-m—-h.nl-'\—'

12:41
3.4
23,84
BHZE

12146
4,7
0,61
T34

12156 15:01

7.3 1.5 69,4 B7.2 64,9 62,6
1.41 3.04 2.54 2.93 3,95 3.52
641 7871 2092 #2141 2131 2158

‘ii;;“ “'3!

IR

'rnmw.'.-r_rm"

LOG{count /sec)

sr~wedge-like

16441
~356T[eV]

2785
"~ BO0[ev]

465
™ 101[eV]

T3
~1Tev]

0148
"4372 [eV]

Ja3za
~ T3a[eV]

570
“ 124[e¥]

g6
v 21[eV]



Wedge-like structures: Statistical results

Courtesy of Dr. Yu. Ebihara
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Akebono LEP observations during January 6-7, 1997
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Akebono LEP observations during January 7, 1997
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Akebono LEP observations during January 8, 1997
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Akebono LEP observations during January 9, 1997
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Clear wedge-like structures observed by Akebono LEP
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Modelling of Akebono LEP observations of WL on January 7, 1997

3 WL structures identified, lowest energies at:

o 2151 UT, 0.1 keV, L =5.6, 0320 MLT, 11° PA
E‘EI’ 2153 UT, 0.3 keV, L =15.2, 0325 MLT, 12° PA
O 2156 UT, 0.6 keV, L =4.7, 0332 MLT, 15° PA
g

— backward tracing in time, reaching L = &:
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Variations of source distribution and substorm onsets in the tail

Onsets: LANL MPA at 6.6 Re, 04-20 LT
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Modelling of Akebono LEP observations of WL on January 6-7, 199°
3 January 7, 1997
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Summary for wedge-like structures

@ We studied energy-dispersed 1on structures, called wedge-like structures (WL), observed by
Akebono LEP instrument.

@ The observed ion structures are trapped ions extended in energies from 100 eV up to few keV in Type 1
sense, with maximum flux at above 1 keV at inv. lat within 60-70 deg.

@ They are mainly concentrated in the dawn LT sector, Viking and CLUSTER observations are in dayside
sector — orbit-dependent statistics

@ January 6-9, 1997 observations analysed in details: January 6 was very quiet day, later each WL observatic
was after a small substorm, time differs.

@ Backward tracing of lowest energies in WLs seen on LEP spectrograms in Kp-dependent large-scale electr
and magnetic fields showed easy access of plasma sheet particles to Akebono orbit with longest time of 5 ho

@ Artificial increase of source number density in the plasma sheet with 1 minute duration was successful to
reproduce the observed WLs (similar to Ebihara et al, 2001).

@ Introducing the observed (LANL MPA) variations of number density and temperature did not result in
reproducing the observed spectrograms, no observations of large 1 minute variations necessary for WL form:

@ Role of substorm-associated fields should be considered



. . - Particles carrying currents move in

fields, currents and particles WELL-KNOWN

- Magnetic fields: model accuracy
and applicability
OPEN QUESTION

- Electric fields: scales, nature,

models for disturbed times
OPEN QUESTIONS

- Ring current. storm key element,
- Space weather: damage to space-
and ground-based technological
systems and danger to human
WELL-KNOWN

- Ring current formation during
storms:
MANY OPEN QUESTIONS..




