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Scope of this lecture

● Plasma simulation techniques:
– MHD simulation (fluid simulation)
– particle simulation
– hybrid simulation
– Vlasov simulation

● Application areas:
– space plasma
– fusion and laboratory plasma (not covered here)
– fluid dynamics, aerodynamics (not covered here)
– methods also applicable to simulation of gravity 

(galaxy, stellar clusters; not covered here)



Fluid simulation: Euler equations

Primitive form: Conservative form:

Conservative form guarantees
correct shock speed and preserves
conserved quantities to roundoff
error when discretised using
finite-volume method (FVM)



MHD equations: primitive form

Primitive variable 8-tuple:
(ρ,v,P,B)

The primitive form
is the simplest
to write down
and remember

γ=adiabatic index,
usually γ=5/3;
generally γ=(f+2)/f
where f=number of
degrees of freedom



MHD equations: conservative form

● Variable 8-tuple is now (ρ,p=ρv,U,B)         
where U = P/(γ-1)+p2/(2ρ)+B2/(2μ

0
)



MHD: Semiconservative form

Non-conservative
electromagnetic
force and energy flux
added to
conservative 
fluid (Euler) equations

Does not guarantee
correct shock speed
or exact energy and
momentum conservation



Non-idealities in MHD

● note that j = en(v
i
-v

e
); in MHD, v=v

i
, thus B is 

frozen into electron flow when Hall-term included
● if diffusion parameters are not constant, they must 

appear inside gradient

Hall-term



FVM Godunov-type methods
● FVM = Finite-volume method: 

Store volume averages of quantities over each 
computational cell (instead of pointwise values)

● Equations of the form du/dt = -div(something)
are naturally discretised with FVM using cell in-
terface fluxes. This yields automatically to a 
conservative discretisation.

● Godunov-type method:
– Propagate staircase FVM representation exactly
– Compute new cell averages from propagated state
– Godunov-type method can be written down with in-

terfaces fluxes only (no cell averaging needed)



Riemann solvers

● “Riemann solver” = Solution of initial-value problem 
with stepwise initial data

● In 1-D Euler equations, even exact Riemann solver is 
known

● In 1-D MHD, practically usable exact solver does not 
exist

● In 2-D and 3-D, no exact solvers, but alternating di-
rection discretisation works rather well in practice

● An exception: div(B)=0 constraint is problematic in 
MHD in 2-D and 3-D since it is essentially multidi-
mensional



1-D approximate Riemann solvers
● Harten-Lax-vanLeer (HLL) solver:

Uses one intermediate state which prop-
agates away from the discontinuity and 
which is defined as the spatial average 
of the exact Riemann problem solution

● Easy to construct for any equation sys-
tem, only interface fluxes needed

● If continuum problem preserves positivi-
ty, so does the HLL-discretisation (!)

● Drawback: Has high diffusion
● Recent developments: Generalise HLL 

to have more intermediate states



1-D approx. Riemann solvers, cont'd
● Roe's approximate Riemann solver:

Linearise equations around the interface
and solve the linearised Riemann problem 
exactly
– Need to specify the averaging scheme used (one 

possibility: “√ρ-averaging = Roe-averaging”)
– Needs to be able to solve the linearised eigensystem 

(eigenvalues, left and right eigenvectors 
analytically); this is possible but rather cumbersome 
for MHD

– Can yield negative pressures if the interface jump is 
large



MHD monopole removal methods

● So-called elliptic cleaning:
write B' = B + grad(ΔΦ) and require div(B')=0,
which gives Poisson equation for scalar field 
ΔΦ, with div(B) as source term.
May produce negative pressures since P 
depends on B. One way to fix is to break energy 
conservation locally in these (hopefully rare) 
cases.

● Yee-mesh method: store B as interface surface 
averages (only normal component stored on 
each surface). Breaks conservation, method no 
longer fully FVM.



Origin of the monopole problem

● If problem is solved alternating in X,Y,Z, in 
each 1-D subproblem the 1-D div(B) is just 
dB

x
/dx etc. which can be zero only if B-field is 

trivial. Thus, the 1-D subproblems always “see” 
nonzero div(B), even if the true 3-D div(B) 
vanishes in some discrete sense.

● Continuum MHD equations have no solution if 
the initial state has nonzero div(B)

● Adding monopoles to MHD theory at the 
fundamental level is one possibility, and has 
given rise to some new numerical methods



Domain of validity of MHD
● Euler equations hold for scales much larger than 

collision mean free path (counterexample: re-
entry vehicle physics)

● Likewise for MHD, but in addition, in the 
perpendicular direction it suffices scale to be 
much larger than ion Larmor radius

● Non-MHD scale processes, if nonlinear, may 
have global consequences that make MHD 
invalid at all scales in principle. (This holds also 
in fluid dynamics.)

● Mass, momentum and energy conservation 
described by MHD are exactly valid. To the 
extent these fix the solution, MHD is good.



MHD implementation issues
● Serious MHD code typically must use some form 

of grid adaptation, which inevitably makes  the 
implementation rather complex.

● To handle the complexity, careful planning and 
good language (C++!) are needed. Heavy hand-
optimisation of time-critical code, although 
desirable, is not always realistic because of the 
complexity.

● MHD is never very simple to program, not even 
on uniform grid. Even in fluid dynamics there has 
been room for commercial software industry 
(Fluent, Fidap, Elmer...), and FD is just a subset 
of MHD.



Adaptive mesh techniques
● Grid types

– uniform grid
– stretched or deformed uniform grid
– cell-by-cell hierarchically refined cubic grid
– block-by-block refined, locally uniform grid
– fully general grid containing arbitrary-shaped cells

● Grid can be fixed in time (adapted grid) or 
change dynamically during the run (adaptive 
grid). In the latter case, the grid refinement and 
coarsening may be based on the solution alone 
(fully automatic) or include a user-specified 
component (semiautomatic).



Hierarchically refined cubic grid



Block-refined grids

● Block-refined grids are locally uniform and thus 
fast to traverse; on the other hand there is some 
overhead because some cells are refined 
unnecessarily

(csem.engin.umich.edu/docs/)



AMR = Adaptive Mesh Refinement 

(www.icase.edu/docs/hilites/jjq/images/amr.gif)



Time discretisation
● Time discretisation can be explicit or implicit.
● In explicit scheme, timestep at a cell must be 

shorter than fastest wave travel time across cell 
(the Courant condition, or CFL condition).

● The maximum usable timestep may vary widely 
across the grid, because both Alfven speed and 
cell size differ. To save computing time, one may 
use temporal subcycling to take short steps only 
where needed.

● Implicit MHD has been studied and to some 
extent used by the Michigan group.



Parallelisation
● In large codes, parallelisation is usually needed 

nowadays.
● Most widely used parallelisation strategy is 

domain decomposition, i.e. each processor owns 
a specific domain and handles all computation in 
that domain. Domain boundaries may move or 
remain fixed, depending on the application.

● Domain-decomposed MHD on uniform or 
stretched grids has been in use for some years.

● How to combine domain decomposition with 
adaptive gridding is an active research topic.

● Usually one uses the MPI library (Message 
Passing Interface).



Particle simulation

● Idea: Plasma particles move in their own self-
consistent fields

● Components: Particle mover, Field equation 
solver, Charge & current density accumulation

● Types:
– electrostatic model
– Darwin (magnetoionic) model (zero divergence-free 

part of displacement current in Ampere's law)
– fully electromagnetic model

● Main applicability: Small scales
● Main issue: Particle noise ~ 1/√N



Explicit and implicit time integration

● Explicit time integration: Timestep must be 
(clearly) smaller than:
– inverse electron plasma frequency (electrostatic)
– electron travel time across grid cell (electrostatic)
– light travel time across grid cell (electromagnetic)

● Implicit time integration does not have this 
restriction, but it must solve more complicated 
elliptic equation than Poisson

● Despite much research (~30 years) and promising 
results, implicit schemes have not replaced 
explicit schemes in practice (Why? Good 
question...)



Components of particle simulation
● Particle mover and field interpolation:

– interpolate E and B fields at particle position from the 
gridded fields

– use time-symmetric Boris-Buneman Lorentz force 
integrator (while alternatives exist, this is virtually the 
standard)

● Field solver:
– Poisson solver in electrostatic case
– in electromagnetic case, also need time integration of 

Ampere and Faraday laws (often in staggered (Yee-) 
grid)

● Charge and current density accumulation:
– must use the same interpolation scheme as in particle 

mover, otherwise self-force instability!!



Implementation issues
● Particle simulation algorithms are so simple that 

heavy hand-optimisation is typically done (in  
contrast to MHD simulations):
– integer-valued coordinates (~2* speedup)
– cache-friendliness, single pass through particle tables 

which combines both mover and accumulation phases
– assembly language, multimedia instructions
– often memory size is bottleneck, store particle data 

with 32 bits or even less
– if parallelisation needed, must throw particles back 

and forth between processors (not too difficult, 
provided that the grid part parallelises smoothly)



Sources of information
● Two books above all:

– Birdsall and Langdon, Plasma physics via 
computer simulation (comprehensive, some errors, 
some topics difficult but not necessarily needed in 
applications)

– Hockney and Eastwood, Computer simulation 
using particles (different notation for interpolation 
functions, includes also applications to gravity and 
semiconductors)

● In contrast to MHD/fluid simulations, the recipe 
here is basically: Read these and go to work!

● Basic theory became ready in the 1970's and 
early 1980's, no big new developments after that

● But it's essential to study these books carefully!



Domain of validity
● (Explicit) electrostatic model:

– Spatial grid size must be of the order of electron 
Debye length or somewhat smaller

– Timestep must be smaller than ~0.2*inverse electron 
plasma angular frequency and electron traveltime 
across grid cell, whichever is smaller

● (Explicit) electromagnetic model:
– in addition, timestep must be smaller than light 

traveltime across grid cell (!)
● Thus, one is limited to rather small scales

– For example, Debye length is ~100 m in auroral 
magnetosphere, region contains ~105 Debye lengths 
in field-aligned direction (and each cell must contain 
~100 particles to achieve ~10% noise level)



Public domain software
Code ES1, XES1 and Xgrafix library (ptsg.eecs.berkeley.edu)



Hybrid simulation
● Idea: Fluid electrons, particle ions
● Benefits:

– Longer timesteps can be taken because electron 
plasma frequency and gyromotion need not be 
followed

– Grid spacing can be much larger than Debye length 
(its natural scale is so-called ion inertial length c/ω

pi
)

● Drawbacks:
– Electron kinetic effects not included
– Conservative formulation as in MHD not known

● All in all:
– Hybrid simulation has the potential of carrying over 

many of the benefits of particle simulation to larger 
scale size problems



Hybrid simulation applications

● Small, weakly magnetised magnetospheres
– All terrestrial planets except Earth:Mercury, Venus, 

Mars, Titan
– Medium-sized rocky bodies: Moon, asteroids
– Comets (although object very small, its plasma 

environment is much larger)
● Currently not well applicable to more strongly 

magnetised objects such as the Earth (reasons are 
partly unclear)

● Local simulations in magnetotail
● Local simulations at bow shock/magnetosheath



Vlasov simulation
● Idea: Like kinetic simulation, but instead of using 

particles, simulate distribution function by a 
phase space grid

● Grid size and timestep issues rather similar to 
corresponding particle simulation

● Benefits compared to particle simulation:
– No particle noise

● Drawbacks:
– Phase space is 6-D (!)

● Thus far not used too much, but importance 
likely to grow in the future (!)



Vlasov simulation techniques
● Semi-Lagrangian method

– Use Liouville theorem: f constant along phase space 
flowlines. Integrate backward along flowlines and interpolate 
from old function.

– Non-conservative
● The Rasio method (always go back to initial condition)
● Velocity space Fourier-transform (or other transform) 

method (Bengt Eliasson; only for uniform grids)
● Conservative semi-Lagrangian method of Iske and 

Käser (only in 1+1 D)
● FVM conservative methods
● Arakawa-type finite difference method (only 1+1 D)
● “Phase space cloud” method of Alard and Colombi



Velocity-Fourier Vlasov example

(Bengt Eliasson)



Semi-Lagrangian principle
www.isis.rl.ac.uk/AcceleratorTheory/workshop/talks/Sonnendrucker.pdf



L U N C H



Grid types & approximation schemes
● In all simulation types (even in particle simulation), 

approximating a continuous function (field) on a finite 
grid is needed.

● Grid types:
– uniform (Cartesian) grid
– stretched (or mapped) uniform grid
– hierarchically refined Cartesian (HC) grid
– fully general grid
– all have also triangle/tetrad/simplex variants

● Approximation schemes:
– finite difference (FDM; tabulation of points and interpolation)
– finite volume (FVM; store cell volume averages)
– finite element (FEM; most general; represent function in each 

cell by algebraic formula)



Approximation schemes
● FDM/FVM/FEM sometimes yield the same 

numerical method
● FVM is natural when conservation laws are involved
● FEM is like FDM but can handle more flexibly 

complex geometries and boundary shapes
● On the other hand FEM is also like generalised FVM
● Classification FDM/FVM/FEM is not fundamental or 

strict
● FEM is not the “best” and FDM not the “worst”
● Fourier (or other transform) representation can be 

seen as extreme case of FEM. (Fourier methods are 
potentially very good, but typically tricky to get 
working robustly in fluid dynamics and MHD)



Grid types
● Rectangle/cubic/hexahedral grids typically work 

better numerically than triangle/tetrad/simplex grids. 
The reasons are not too well known.

● Computer time and memory saving due to use of 
adaptive grid types can be huge, and increases with 
problem size.

● Having said that, it is also true that the approximation 
quality never improves by removing grid points.

● In given CPU-time and memory, however, use of 
adaptive grid is likely to be the optimal solution 
(sometimes by quite a large margin).

● If particles are involved and if grid is adaptive, 
particle splitting and joining are typically needed as 
well. Join as 3->2 (energy+momentum conservation!)



Uniform grid



Stretched grid



Hierarchical Cartesian (HC) grid



General grid



General grid

From Bern, Eppstein and Gilbert, “Provably good mesh generation”



Interpolation from a grid
● To get any numbers out of the simulation, one needs 

to interpolate:
– interpolation from uniform grid is handled in textbooks
– stretched grid is a simple variant of this
– in HC-grid, cell lookup takes O(level) operations, i.e. 

rather fast but not as fast as on uniform grid
● In general grid, cell lookup is nontrivial:

– linear search from a cell list is usually too slow
– caching strategies are possibly needed
– or one has to use auxiliary HC-grid

● Conservative interpolation (convolution of cloud and 
cells) should in principle be used with FVM, although 
in practice one often uses pointwise interpolation 
even with volume grid



How much does adaptivity help?
● Quite a lot.
● More accurate answer: Depends on whether you use 

HC-grid or even more general grid. Although much 
better than stretched uniform grid, the HC-grid still 
gets you only part of the benefits.

● In HC-grid:
– Representing a surface such as a magnetopause or bow 

shock effectively reduces dimension by one: from O(N3) 
we get down to O(N2)

– Rod or line (~ magnetosphere): from O(N3) to O(N)
– A point (~Earth): from O(N3) down to O(1)

● With anisotropic “brick grid”:
– We get down to O(N) or smaller in all the above cases
– If grid cells allowed to bend, we get down to O(1)



Anisotropic, general grid

From Bossen and Heckbert, “A pliant method for aniso. mesh gen.”

This looks nice, but 
has one drawback 
still: it is triangular.

Recall that hexahe-
dral grids typically 
work better numer-
ically.



Detail of the previous

From Bossen and Heckbert, “A pliant method for aniso. mesh gen.”



From Bossen and Heckbert, “A pliant method for aniso. mesh gen.”



2-D supersonic flow channel

From Frey and Alauzet, “Anisotropic mesh generation for 
transient flows simulations”



Local zoom of the previous

From Frey and Alauzet, “Anisotropic mesh generation for 
transient flows simulations”



I show this once more...



Particle propagators
● Everyone must know the Buneman-Boris time-

symmetric Lorentz force integrator:
– It's energy conservative
– It's simple to program and executes fast
– Even if run with too large timestep, it remains stable and 

reproduces Larmor motion with exaggerated Larmor 
radius

● Its relativistic generalisation is also easy
● Switching from Buneman to guiding centre 

approximation and back is a possibility to increase 
performance
– Each switch randomises phase and breaks some invariants

● Using the monopole solver may be an alternative
–  (Janhunen and Olsson, 2002)



Buneman-Boris Lorentz force 
integrator

● Solve algebraically for x
i

n+1/2 and v
i

n+1

● E and B are interpolated at x
i

n+1/2

● For implementation with least FLOPs, see 
Birdsall and Langdon book



The “monopole solver”

● Charged particle orbit in dipole field cannot be 
solved analytically, but in magnetic monopole 
field it can (spiral on a cone)

● Idea: Approximate B-field around particle by a 
monopole field (the monopole is not at centre of 
Earth but at some other location which varies as 
the particle moves)

● Since the solution is exact, timestep can be much 
longer than with Buneman-Boris integrator

● Monopole field is convergent and thus often 
better local approximation than constant field



Elliptic equations

● Types of elliptic equations:
– Poisson
– Separable coefficients (Poisson and Helmholz in 

spherical coordinates, e.g.)
– General elliptic equations (coefficients depend on all 

coordinates in non-factorable way)
● Where they arise from:

– Electrostatic particle or Vlasov simulation (Poisson)
– Implicit particle simulation (General elliptic)
– Current continuity equation in ionosphere (General 

elliptic)
– div(B) removal in MHD (Poisson)
– Electromagnetic particle sim. (Poisson + Helmholz)



“Rapid” elliptic solvers
● Applicable to constant-coefficient equations or 

equations where coefficients factor like f(x) g(y)
● If parallelisation strategy allows it, FFT method is 

straightforward and nearly optimal speed 
(although not quite; for better, see Hockney and 
Eastwood book)

● One of the dimensions can also be done with 
tridiagonal solver, which can be parallelised better 
than FFT e.g. by pipelining

● Equally important than speed is the fact that the 
FFT/tridiag methods are usually quite stable and 
produce reliable answer 



Iterative elliptic solvers
● If rapid solvers are not applicable, iterative solvers 

must be used
● There are many (Gauss, Gauss-Seidel, SOR, ADI, 

SIP, multigrid,...), but only one really works well: 
the Conjugate Gradient (or Bi-CG) algorithm

● Look up the pseudocode from Numerical Recipes 
and implement in your language
– It's beautiful, relatively simple and very general!

● In many cases you don't even need a preconditioner
– But restarting the algorithm every now and then is simple 

to program and may be beneficial also
● CG has applications also in advanced data analysis 

(e.g. auroral tomography)



About roundoff error in general
● When grids become larger, roundoff error becomes 

more and more of a problem
● The problem is especially prominent with elliptic 

solvers
● For example, the SIPSOL solver works very well up 

to grid sizes about 50x50; for larger than that, it often 
does not converge at all

● It is easy to generate example problems (e.g., just by 
using random number coefficients) where any known 
elliptic solver fails to converge

● Robustness is much more severe problem than what 
you get by e.g. reading “Numerical Recipes” (which 
is otherwise very recommendable book!)



Future prospects of simulations

● Simulations will probably separate into two 
disciplines:
– (1) Quick solution of problems using self-written simple 

programs on your PC or laptop
– (2) Large, professional-quality parallelised software 

systems emerge for attacking challenging problems
● Since CPU speed increases:

– Importance of numerical stability and robustness will 
increase

– Importance of grid adaptivity will increase
– Importance of Vlasov simulation will increase
– Importance of multiphysical problems will increase



Some advice
● Computing speed grows exponentially with time. 

Thus every year, some problems turn from non-
solvable to solvable. This has been the situation ever 
since the first computers were built.

● However, not all relevant problems are solved during 
the year they first become solvable!

● Thus, there are physically relevant problems that are 
easy to simulate nowadays, which would have been 
at “grand challenge” class 10-20 years ago, but 
which nobody yet simulated.

● Thus, while hard problems are challenging, do not 
ignore the easy ones!



Prospects in the application domain
● In plasma physics, simulation models have not yet 

reached the maturity of other “normal” physics:
– In my opinion this is mainly due to the fact the plasma 

physics should really be done in 6-D phase space.
– For an arbitrary planet, shape and size of magnetosphere 

is simulated correctly, but not such processes as rate of 
atmospheric erosion or coherent radio output power (for 
the latter two, predicting even the correct order of 
magnitude is hard)

– Compare this to climate simulation (neutral fluid 
dynamics with radiation), where e.g. global temperature 
comes out correctly to ~1 % or better

– Plasma is inherently difficult, both in theory, and to 
simulate.



Quantifying plasma difficulties
● In neutral fluid, we have the sound wave and the 

entropy wave (contact discontinuity). Sound is 
typically approximated away in geophysical flows.

● In MHD, the sound wave splits into slow, Alfven and 
fast magnetosonic wave. Propagation properties 
depend on B-field direction.

● In real (i.e. kinetic-based) plasma physics, we have 
almost too many wave modes to list and remember:
– whistler waves (modified fast magnetosonic)
– ion acoustic waves
– ion Bernstein waves
– lower and upper hybrid waves
– etc., etc., (e.g., all electron modes missing from this list...)



Importance of plasma in space
● Gravity governs the universe, but plasma physics has its 

role to play everywhere. Many of the nontrivial 
questions in space are plasma-physical:
– reconnection and its resulting particle acceleration
– shock acceleration
– dynamo action (magnetic fields of stars, planets, magnetars..)
– details of gamma ray bursts, gamma flares, supernovas
– details of solar system formation
– details of stellar evolution (loss of angular momentum?)
– primordial magnetic fields (are there any?)

● Many of these have astrobiological dimension, e.g:
– stability of planetary atmospheres on low-mass planets&stars
– details of life-threatening supernovas and gamma ray bursts
– strength of flares on lighter-than-Sun stars



Importance of plasma in space 2
● To attack some of these questions, we need 

multiphysical advanced simulations, together with good 
physical understanding of their results.

● For example, for stars: “relativistic or non-relativistic 
MHD with gravity, radiation and particle physics & 
good equations of state, parallelised on automatically 
adapted grid” would be high on the wish list

● Or, for planets: May I have one  of your “parallelised 
Vlasov solvers with anisotropically adaptive grid, with 
neutral collisions and charge-exchange processes and 
modelled small-scale wave-electron interactions” (with 
home delivery, please)



You were seeing

● MHD
● Particle simulation
● Hybrid simulation
● Vlasov simulation

● Grid types
● Particle propagators
● Elliptic solvers
● And some future prospects


