
Numerical simulation techniques

Pekka Janhunen, FMI/Space
Graduate Summer School Lecture,

Kiljavanranta, 16 June 2005

Scope of this lecture

● Plasma simulation techniques:
– MHD simulation (fluid simulation)
– particle simulation
– hybrid simulation
– Vlasov simulation

● Application areas:
– space plasma
– fusion and laboratory plasma (not covered here)
– fluid dynamics, aerodynamics (not covered here)
– methods also applicable to simulation of gravity

(galaxy, stellar clusters; not covered here)

Fluid simulation: Euler equations

Primitive form: Conservative form:

Conservative form guarantees
correct shock speed and preserves
conserved quantities to roundoff
error when discretised using
finite-volume method (FVM)

MHD equations: primitive form

Primitive variable 8-tuple:
(ρ,v,P,B)

The primitive form
is the simplest
to write down
and remember

γ=adiabatic index,
usually γ=5/3;
generally γ=(f+2)/f
where f=number of
degrees of freedom

MHD equations: conservative form

● Variable 8-tuple is now (ρ,p=ρv,U,B)
where U = P/(γ-1)+p2/(2ρ)+B2/(2μ

0
)

MHD: Semiconservative form

Non-conservative
electromagnetic
force and energy flux
added to
conservative
fluid (Euler) equations

Does not guarantee
correct shock speed
or exact energy and
momentum conservation

Non-idealities in MHD

● note that j = en(v
i
-v

e
); in MHD, v=v

i
, thus B is

frozen into electron flow when Hall-term included
● if diffusion parameters are not constant, they must

appear inside gradient

Hall-term

FVM Godunov-type methods
● FVM = Finite-volume method:

Store volume averages of quantities over each
computational cell (instead of pointwise values)

● Equations of the form du/dt = -div(something)
are naturally discretised with FVM using cell in-
terface fluxes. This yields automatically to a
conservative discretisation.

● Godunov-type method:
– Propagate staircase FVM representation exactly
– Compute new cell averages from propagated state
– Godunov-type method can be written down with in-

terfaces fluxes only (no cell averaging needed)

Riemann solvers

● “Riemann solver” = Solution of initial-value problem
with stepwise initial data

● In 1-D Euler equations, even exact Riemann solver is
known

● In 1-D MHD, practically usable exact solver does not
exist

● In 2-D and 3-D, no exact solvers, but alternating di-
rection discretisation works rather well in practice

● An exception: div(B)=0 constraint is problematic in
MHD in 2-D and 3-D since it is essentially multidi-
mensional

1-D approximate Riemann solvers
● Harten-Lax-vanLeer (HLL) solver:

Uses one intermediate state which prop-
agates away from the discontinuity and
which is defined as the spatial average
of the exact Riemann problem solution

● Easy to construct for any equation sys-
tem, only interface fluxes needed

● If continuum problem preserves positivi-
ty, so does the HLL-discretisation (!)

● Drawback: Has high diffusion
● Recent developments: Generalise HLL

to have more intermediate states

1-D approx. Riemann solvers, cont'd
● Roe's approximate Riemann solver:

Linearise equations around the interface
and solve the linearised Riemann problem
exactly
– Need to specify the averaging scheme used (one

possibility: “√ρ-averaging = Roe-averaging”)
– Needs to be able to solve the linearised eigensystem

(eigenvalues, left and right eigenvectors
analytically); this is possible but rather cumbersome
for MHD

– Can yield negative pressures if the interface jump is
large

MHD monopole removal methods

● So-called elliptic cleaning:
write B' = B + grad(ΔΦ) and require div(B')=0,
which gives Poisson equation for scalar field
ΔΦ, with div(B) as source term.
May produce negative pressures since P
depends on B. One way to fix is to break energy
conservation locally in these (hopefully rare)
cases.

● Yee-mesh method: store B as interface surface
averages (only normal component stored on
each surface). Breaks conservation, method no
longer fully FVM.

Origin of the monopole problem

● If problem is solved alternating in X,Y,Z, in
each 1-D subproblem the 1-D div(B) is just
dB

x
/dx etc. which can be zero only if B-field is

trivial. Thus, the 1-D subproblems always “see”
nonzero div(B), even if the true 3-D div(B)
vanishes in some discrete sense.

● Continuum MHD equations have no solution if
the initial state has nonzero div(B)

● Adding monopoles to MHD theory at the
fundamental level is one possibility, and has
given rise to some new numerical methods

Domain of validity of MHD
● Euler equations hold for scales much larger than

collision mean free path (counterexample: re-
entry vehicle physics)

● Likewise for MHD, but in addition, in the
perpendicular direction it suffices scale to be
much larger than ion Larmor radius

● Non-MHD scale processes, if nonlinear, may
have global consequences that make MHD
invalid at all scales in principle. (This holds also
in fluid dynamics.)

● Mass, momentum and energy conservation
described by MHD are exactly valid. To the
extent these fix the solution, MHD is good.

MHD implementation issues
● Serious MHD code typically must use some form

of grid adaptation, which inevitably makes the
implementation rather complex.

● To handle the complexity, careful planning and
good language (C++!) are needed. Heavy hand-
optimisation of time-critical code, although
desirable, is not always realistic because of the
complexity.

● MHD is never very simple to program, not even
on uniform grid. Even in fluid dynamics there has
been room for commercial software industry
(Fluent, Fidap, Elmer...), and FD is just a subset
of MHD.

Adaptive mesh techniques
● Grid types

– uniform grid
– stretched or deformed uniform grid
– cell-by-cell hierarchically refined cubic grid
– block-by-block refined, locally uniform grid
– fully general grid containing arbitrary-shaped cells

● Grid can be fixed in time (adapted grid) or
change dynamically during the run (adaptive
grid). In the latter case, the grid refinement and
coarsening may be based on the solution alone
(fully automatic) or include a user-specified
component (semiautomatic).

Hierarchically refined cubic grid

Block-refined grids

● Block-refined grids are locally uniform and thus
fast to traverse; on the other hand there is some
overhead because some cells are refined
unnecessarily

(csem.engin.umich.edu/docs/)

AMR = Adaptive Mesh Refinement

(www.icase.edu/docs/hilites/jjq/images/amr.gif)

Time discretisation
● Time discretisation can be explicit or implicit.
● In explicit scheme, timestep at a cell must be

shorter than fastest wave travel time across cell
(the Courant condition, or CFL condition).

● The maximum usable timestep may vary widely
across the grid, because both Alfven speed and
cell size differ. To save computing time, one may
use temporal subcycling to take short steps only
where needed.

● Implicit MHD has been studied and to some
extent used by the Michigan group.

Parallelisation
● In large codes, parallelisation is usually needed

nowadays.
● Most widely used parallelisation strategy is

domain decomposition, i.e. each processor owns
a specific domain and handles all computation in
that domain. Domain boundaries may move or
remain fixed, depending on the application.

● Domain-decomposed MHD on uniform or
stretched grids has been in use for some years.

● How to combine domain decomposition with
adaptive gridding is an active research topic.

● Usually one uses the MPI library (Message
Passing Interface).

Particle simulation

● Idea: Plasma particles move in their own self-
consistent fields

● Components: Particle mover, Field equation
solver, Charge & current density accumulation

● Types:
– electrostatic model
– Darwin (magnetoionic) model (zero divergence-free

part of displacement current in Ampere's law)
– fully electromagnetic model

● Main applicability: Small scales
● Main issue: Particle noise ~ 1/√N

Explicit and implicit time integration

● Explicit time integration: Timestep must be
(clearly) smaller than:
– inverse electron plasma frequency (electrostatic)
– electron travel time across grid cell (electrostatic)
– light travel time across grid cell (electromagnetic)

● Implicit time integration does not have this
restriction, but it must solve more complicated
elliptic equation than Poisson

● Despite much research (~30 years) and promising
results, implicit schemes have not replaced
explicit schemes in practice (Why? Good
question...)

Components of particle simulation
● Particle mover and field interpolation:

– interpolate E and B fields at particle position from the
gridded fields

– use time-symmetric Boris-Buneman Lorentz force
integrator (while alternatives exist, this is virtually the
standard)

● Field solver:
– Poisson solver in electrostatic case
– in electromagnetic case, also need time integration of

Ampere and Faraday laws (often in staggered (Yee-)
grid)

● Charge and current density accumulation:
– must use the same interpolation scheme as in particle

mover, otherwise self-force instability!!

Implementation issues
● Particle simulation algorithms are so simple that

heavy hand-optimisation is typically done (in
contrast to MHD simulations):
– integer-valued coordinates (~2* speedup)
– cache-friendliness, single pass through particle tables

which combines both mover and accumulation phases
– assembly language, multimedia instructions
– often memory size is bottleneck, store particle data

with 32 bits or even less
– if parallelisation needed, must throw particles back

and forth between processors (not too difficult,
provided that the grid part parallelises smoothly)

Sources of information
● Two books above all:

– Birdsall and Langdon, Plasma physics via
computer simulation (comprehensive, some errors,
some topics difficult but not necessarily needed in
applications)

– Hockney and Eastwood, Computer simulation
using particles (different notation for interpolation
functions, includes also applications to gravity and
semiconductors)

● In contrast to MHD/fluid simulations, the recipe
here is basically: Read these and go to work!

● Basic theory became ready in the 1970's and
early 1980's, no big new developments after that

● But it's essential to study these books carefully!

Domain of validity
● (Explicit) electrostatic model:

– Spatial grid size must be of the order of electron
Debye length or somewhat smaller

– Timestep must be smaller than ~0.2*inverse electron
plasma angular frequency and electron traveltime
across grid cell, whichever is smaller

● (Explicit) electromagnetic model:
– in addition, timestep must be smaller than light

traveltime across grid cell (!)
● Thus, one is limited to rather small scales

– For example, Debye length is ~100 m in auroral
magnetosphere, region contains ~105 Debye lengths
in field-aligned direction (and each cell must contain
~100 particles to achieve ~10% noise level)

Public domain software
Code ES1, XES1 and Xgrafix library (ptsg.eecs.berkeley.edu)

Hybrid simulation
● Idea: Fluid electrons, particle ions
● Benefits:

– Longer timesteps can be taken because electron
plasma frequency and gyromotion need not be
followed

– Grid spacing can be much larger than Debye length
(its natural scale is so-called ion inertial length c/ω

pi
)

● Drawbacks:
– Electron kinetic effects not included
– Conservative formulation as in MHD not known

● All in all:
– Hybrid simulation has the potential of carrying over

many of the benefits of particle simulation to larger
scale size problems

Hybrid simulation applications

● Small, weakly magnetised magnetospheres
– All terrestrial planets except Earth:Mercury, Venus,

Mars, Titan
– Medium-sized rocky bodies: Moon, asteroids
– Comets (although object very small, its plasma

environment is much larger)
● Currently not well applicable to more strongly

magnetised objects such as the Earth (reasons are
partly unclear)

● Local simulations in magnetotail
● Local simulations at bow shock/magnetosheath

Vlasov simulation
● Idea: Like kinetic simulation, but instead of using

particles, simulate distribution function by a
phase space grid

● Grid size and timestep issues rather similar to
corresponding particle simulation

● Benefits compared to particle simulation:
– No particle noise

● Drawbacks:
– Phase space is 6-D (!)

● Thus far not used too much, but importance
likely to grow in the future (!)

Vlasov simulation techniques
● Semi-Lagrangian method

– Use Liouville theorem: f constant along phase space
flowlines. Integrate backward along flowlines and interpolate
from old function.

– Non-conservative
● The Rasio method (always go back to initial condition)
● Velocity space Fourier-transform (or other transform)

method (Bengt Eliasson; only for uniform grids)
● Conservative semi-Lagrangian method of Iske and

Käser (only in 1+1 D)
● FVM conservative methods
● Arakawa-type finite difference method (only 1+1 D)
● “Phase space cloud” method of Alard and Colombi

Velocity-Fourier Vlasov example

(Bengt Eliasson)

Semi-Lagrangian principle
www.isis.rl.ac.uk/AcceleratorTheory/workshop/talks/Sonnendrucker.pdf

L U N C H

Grid types & approximation schemes
● In all simulation types (even in particle simulation),

approximating a continuous function (field) on a finite
grid is needed.

● Grid types:
– uniform (Cartesian) grid
– stretched (or mapped) uniform grid
– hierarchically refined Cartesian (HC) grid
– fully general grid
– all have also triangle/tetrad/simplex variants

● Approximation schemes:
– finite difference (FDM; tabulation of points and interpolation)
– finite volume (FVM; store cell volume averages)
– finite element (FEM; most general; represent function in each

cell by algebraic formula)

Approximation schemes
● FDM/FVM/FEM sometimes yield the same

numerical method
● FVM is natural when conservation laws are involved
● FEM is like FDM but can handle more flexibly

complex geometries and boundary shapes
● On the other hand FEM is also like generalised FVM
● Classification FDM/FVM/FEM is not fundamental or

strict
● FEM is not the “best” and FDM not the “worst”
● Fourier (or other transform) representation can be

seen as extreme case of FEM. (Fourier methods are
potentially very good, but typically tricky to get
working robustly in fluid dynamics and MHD)

Grid types
● Rectangle/cubic/hexahedral grids typically work

better numerically than triangle/tetrad/simplex grids.
The reasons are not too well known.

● Computer time and memory saving due to use of
adaptive grid types can be huge, and increases with
problem size.

● Having said that, it is also true that the approximation
quality never improves by removing grid points.

● In given CPU-time and memory, however, use of
adaptive grid is likely to be the optimal solution
(sometimes by quite a large margin).

● If particles are involved and if grid is adaptive,
particle splitting and joining are typically needed as
well. Join as 3->2 (energy+momentum conservation!)

Uniform grid

Stretched grid

Hierarchical Cartesian (HC) grid

General grid

General grid

From Bern, Eppstein and Gilbert, “Provably good mesh generation”

Interpolation from a grid
● To get any numbers out of the simulation, one needs

to interpolate:
– interpolation from uniform grid is handled in textbooks
– stretched grid is a simple variant of this
– in HC-grid, cell lookup takes O(level) operations, i.e.

rather fast but not as fast as on uniform grid
● In general grid, cell lookup is nontrivial:

– linear search from a cell list is usually too slow
– caching strategies are possibly needed
– or one has to use auxiliary HC-grid

● Conservative interpolation (convolution of cloud and
cells) should in principle be used with FVM, although
in practice one often uses pointwise interpolation
even with volume grid

How much does adaptivity help?
● Quite a lot.
● More accurate answer: Depends on whether you use

HC-grid or even more general grid. Although much
better than stretched uniform grid, the HC-grid still
gets you only part of the benefits.

● In HC-grid:
– Representing a surface such as a magnetopause or bow

shock effectively reduces dimension by one: from O(N3)
we get down to O(N2)

– Rod or line (~ magnetosphere): from O(N3) to O(N)
– A point (~Earth): from O(N3) down to O(1)

● With anisotropic “brick grid”:
– We get down to O(N) or smaller in all the above cases
– If grid cells allowed to bend, we get down to O(1)

Anisotropic, general grid

From Bossen and Heckbert, “A pliant method for aniso. mesh gen.”

This looks nice, but
has one drawback
still: it is triangular.

Recall that hexahe-
dral grids typically
work better numer-
ically.

Detail of the previous

From Bossen and Heckbert, “A pliant method for aniso. mesh gen.”

From Bossen and Heckbert, “A pliant method for aniso. mesh gen.”

2-D supersonic flow channel

From Frey and Alauzet, “Anisotropic mesh generation for
transient flows simulations”

Local zoom of the previous

From Frey and Alauzet, “Anisotropic mesh generation for
transient flows simulations”

I show this once more...

Particle propagators
● Everyone must know the Buneman-Boris time-

symmetric Lorentz force integrator:
– It's energy conservative
– It's simple to program and executes fast
– Even if run with too large timestep, it remains stable and

reproduces Larmor motion with exaggerated Larmor
radius

● Its relativistic generalisation is also easy
● Switching from Buneman to guiding centre

approximation and back is a possibility to increase
performance
– Each switch randomises phase and breaks some invariants

● Using the monopole solver may be an alternative
– (Janhunen and Olsson, 2002)

Buneman-Boris Lorentz force
integrator

● Solve algebraically for x
i

n+1/2 and v
i

n+1

● E and B are interpolated at x
i

n+1/2

● For implementation with least FLOPs, see
Birdsall and Langdon book

The “monopole solver”

● Charged particle orbit in dipole field cannot be
solved analytically, but in magnetic monopole
field it can (spiral on a cone)

● Idea: Approximate B-field around particle by a
monopole field (the monopole is not at centre of
Earth but at some other location which varies as
the particle moves)

● Since the solution is exact, timestep can be much
longer than with Buneman-Boris integrator

● Monopole field is convergent and thus often
better local approximation than constant field

Elliptic equations

● Types of elliptic equations:
– Poisson
– Separable coefficients (Poisson and Helmholz in

spherical coordinates, e.g.)
– General elliptic equations (coefficients depend on all

coordinates in non-factorable way)
● Where they arise from:

– Electrostatic particle or Vlasov simulation (Poisson)
– Implicit particle simulation (General elliptic)
– Current continuity equation in ionosphere (General

elliptic)
– div(B) removal in MHD (Poisson)
– Electromagnetic particle sim. (Poisson + Helmholz)

“Rapid” elliptic solvers
● Applicable to constant-coefficient equations or

equations where coefficients factor like f(x) g(y)
● If parallelisation strategy allows it, FFT method is

straightforward and nearly optimal speed
(although not quite; for better, see Hockney and
Eastwood book)

● One of the dimensions can also be done with
tridiagonal solver, which can be parallelised better
than FFT e.g. by pipelining

● Equally important than speed is the fact that the
FFT/tridiag methods are usually quite stable and
produce reliable answer

Iterative elliptic solvers
● If rapid solvers are not applicable, iterative solvers

must be used
● There are many (Gauss, Gauss-Seidel, SOR, ADI,

SIP, multigrid,...), but only one really works well:
the Conjugate Gradient (or Bi-CG) algorithm

● Look up the pseudocode from Numerical Recipes
and implement in your language
– It's beautiful, relatively simple and very general!

● In many cases you don't even need a preconditioner
– But restarting the algorithm every now and then is simple

to program and may be beneficial also
● CG has applications also in advanced data analysis

(e.g. auroral tomography)

About roundoff error in general
● When grids become larger, roundoff error becomes

more and more of a problem
● The problem is especially prominent with elliptic

solvers
● For example, the SIPSOL solver works very well up

to grid sizes about 50x50; for larger than that, it often
does not converge at all

● It is easy to generate example problems (e.g., just by
using random number coefficients) where any known
elliptic solver fails to converge

● Robustness is much more severe problem than what
you get by e.g. reading “Numerical Recipes” (which
is otherwise very recommendable book!)

Future prospects of simulations

● Simulations will probably separate into two
disciplines:
– (1) Quick solution of problems using self-written simple

programs on your PC or laptop
– (2) Large, professional-quality parallelised software

systems emerge for attacking challenging problems
● Since CPU speed increases:

– Importance of numerical stability and robustness will
increase

– Importance of grid adaptivity will increase
– Importance of Vlasov simulation will increase
– Importance of multiphysical problems will increase

Some advice
● Computing speed grows exponentially with time.

Thus every year, some problems turn from non-
solvable to solvable. This has been the situation ever
since the first computers were built.

● However, not all relevant problems are solved during
the year they first become solvable!

● Thus, there are physically relevant problems that are
easy to simulate nowadays, which would have been
at “grand challenge” class 10-20 years ago, but
which nobody yet simulated.

● Thus, while hard problems are challenging, do not
ignore the easy ones!

Prospects in the application domain
● In plasma physics, simulation models have not yet

reached the maturity of other “normal” physics:
– In my opinion this is mainly due to the fact the plasma

physics should really be done in 6-D phase space.
– For an arbitrary planet, shape and size of magnetosphere

is simulated correctly, but not such processes as rate of
atmospheric erosion or coherent radio output power (for
the latter two, predicting even the correct order of
magnitude is hard)

– Compare this to climate simulation (neutral fluid
dynamics with radiation), where e.g. global temperature
comes out correctly to ~1 % or better

– Plasma is inherently difficult, both in theory, and to
simulate.

Quantifying plasma difficulties
● In neutral fluid, we have the sound wave and the

entropy wave (contact discontinuity). Sound is
typically approximated away in geophysical flows.

● In MHD, the sound wave splits into slow, Alfven and
fast magnetosonic wave. Propagation properties
depend on B-field direction.

● In real (i.e. kinetic-based) plasma physics, we have
almost too many wave modes to list and remember:
– whistler waves (modified fast magnetosonic)
– ion acoustic waves
– ion Bernstein waves
– lower and upper hybrid waves
– etc., etc., (e.g., all electron modes missing from this list...)

Importance of plasma in space
● Gravity governs the universe, but plasma physics has its

role to play everywhere. Many of the nontrivial
questions in space are plasma-physical:
– reconnection and its resulting particle acceleration
– shock acceleration
– dynamo action (magnetic fields of stars, planets, magnetars..)
– details of gamma ray bursts, gamma flares, supernovas
– details of solar system formation
– details of stellar evolution (loss of angular momentum?)
– primordial magnetic fields (are there any?)

● Many of these have astrobiological dimension, e.g:
– stability of planetary atmospheres on low-mass planets&stars
– details of life-threatening supernovas and gamma ray bursts
– strength of flares on lighter-than-Sun stars

Importance of plasma in space 2
● To attack some of these questions, we need

multiphysical advanced simulations, together with good
physical understanding of their results.

● For example, for stars: “relativistic or non-relativistic
MHD with gravity, radiation and particle physics &
good equations of state, parallelised on automatically
adapted grid” would be high on the wish list

● Or, for planets: May I have one of your “parallelised
Vlasov solvers with anisotropically adaptive grid, with
neutral collisions and charge-exchange processes and
modelled small-scale wave-electron interactions” (with
home delivery, please)

You were seeing

● MHD
● Particle simulation
● Hybrid simulation
● Vlasov simulation

● Grid types
● Particle propagators
● Elliptic solvers
● And some future prospects

