

Electromagnetic Fields Inside the Magnetosphere

P. K. Toivanen

Finnish Meteorological Institute, Space Research

Outline

- Introduction to large-scale electromagnetic fields
 - ▷ Magnetic field geometry
 - ▷ Magnetospheric convection
 - ▷ Magnetospheric current systems
 - ▷ Magnetospheric dynamics
- Motivation
- Magnetic field models
 - ▷ Historical models
 - ▷ Present-day models
- Electric field models
 - ▷ Equatorial models
 - ▷ Ionospheric models
- Modelling methods
 - ▷ $\nabla \times \mathbf{B} = \mu_o \mathbf{J}$
 - ▷ $\mathbf{E} \cdot \mathbf{B} = 0$
- Deformation method
 - ▷ Motivation
 - ▷ Euler potentials
 - ▷ Theory
 - ▷ Example & Model construction
 - ▷ 3D electric fields
- Modelling example
 - ▷ SSC, April 06, 2000
 - ▷ Dayside compression

Intro to Large-Scale Electromagnetic Fields

Magnetic Field Geometry

- Internal magnetic field
- Dipole tilt
- Solar wind pressure
- Open field lines
- Closed field lines
- Cusp

<http://modelweb.gsfc.nasa.gov/magnitos/data-based/modeling.html>

Intro to Large-Scale Electromagnetic Fields (cont.)

Convection

- Ionosphere:
- Global convection maps to the ionospheric convection
- Typically two-shell pattern (IMF $B_z < 0$)
- High-latitude convection from noon to midnight
- Return convection at lower latitudes via dawn and dusk
- Can be measured by radars

Intro to Large-Scale Electromagnetic Fields (cont.)

Convection (cont.)

- Equatorial plane:
- Earthward convection in the mid-tail
- Plasma flow around the co-rotating plasmasphere to the dayside
- Return convection along the flanks
- Electric field associated with the convection $\sim 0.5\text{mV/m}$
- Cannot be globally measured

Intro to Large-Scale Electromagnetic Fields (cont.)

Convection (cont.)

- Tail cross-section:
- Convection across the tail lobes towards the plasma sheet
- Turns to earthward convection at the plasma sheet

Intro to Large-Scale Electromagnetic Fields (cont.)

Current Systems

- Cross-tail current
- Ring current
- Magnetopause current
- Field-aligned currents

Intro to Large-Scale Electromagnetic Fields (cont.)

Magnetospheric Dynamics

- Magnetic storms
- Magnetopause compression
- Ring current enhancement
- Substorms
- Tail stretching
- Dipolarization

<http://modelweb.gsfc.nasa.gov/magnetos/data-based/modeling.html>

Why Analytical Field Models?

Physical Reasons

- Link between the interplanetary medium and the ionosphere
- Guide and Energize charged particles
- Confines radiation belts and controls the auroral phenomena
- Store a huge amount of energy

Practical Reasons

- Satellite conjunctions (along magnetic field lines)
- Ground-based stations and spacecraft conjunctions
- Test particle simulations (Dr. Ganushkina)
- Mapping of ionospheric convection to the magnetosphere
- Subtract the background field from observation

Magnetic Field Models

- For historical models: See Stern, JGR, 1994.
- IGRF (International Geomagnetic Reference Field)
- Geopack (coordinate transformations, tilt ...)
- T89 (Tsyganenko, JGR, 1989)
 - ▷ Computationally fast
 - ▷ Extremely widely used
 - ▷ Parametrized by K_p
- T96
 - ▷ More realistic current systems
 - ▷ Larger set of input parameters
- All available at
<http://modelweb.gsfc.nasa.gov/magnetos/data-based/modeling.html>

T89 (dash-dotted)

Toivanen (solid)

Electric Field Models

- Equatorial model: Volland, JGR, 1973.
 - ▷ $\varphi = Ar^\gamma \sin \phi$, where A is a constant, and $\gamma = 2$, typically.
- Ionospheric model: Heppner and Maynard, JGR, 1987.

Modelling Methods and Shortcomings

Magnetic Field

- Represent mathematically the field from each major current systems
- Represent the expected response of the field to physical factors that can be determined
- Calibrate the model against a database of average magnetic field observations, tagged by values of the solar wind parameters
- Force balance is not automatically built into the models
- Unreliable in highly time-variable situations such as substorms → event-oriented models (Deformation method below + Dr. Ganushkina)

Modelling Methods and Shortcomings (cont.)

3D Electric Field

- Equipotential mapping (static)
- $\int_{\partial A} \mathbf{E} \cdot d\mathbf{l} = 0$
- Generalized mapping
- $\int_{\partial A} \mathbf{E} \cdot d\mathbf{l} = - \int_A \partial_t \mathbf{B} \cdot d\mathbf{a}$
- Induction included
- Computationally tedious
- Toivanen, P. K., et al., JGR, 1998.

Deformation Method

Motivation

- Solving Faraday's law is complicated ($\nabla \times \mathbf{E} = -\partial_t \mathbf{B}$)
- No explicit vector potential in magnetic field models
- Electrostatic component difficult to include
- $\partial_t \mathbf{A}$ may have a component parallel to \mathbf{B}
- Euler potentials \rightarrow Physical electromagnetic fields

Field	(\mathbf{A}, ϕ)	(α, β, ϕ)
\mathbf{B}	$\nabla \times \mathbf{A}$	$\nabla \alpha \times \nabla \beta$
\mathbf{E}_{vacuum}	$-\partial_t \mathbf{A} - \nabla \phi$	$-\partial_t(\alpha \nabla \beta) - \nabla \phi$
\mathbf{E}_{plasma}	-	$-\partial_t \alpha \nabla \beta + \partial_t \beta \nabla \alpha - \nabla \phi$

Deformation Method (cont.)

- For a given $\alpha(x, y)$

- As to Homer, this can be done to a magnetic field:

- $\mathbf{B}' = \nabla \hat{\alpha} \times \nabla \hat{\beta} \Rightarrow \mathbf{B}' = \mathbf{T} \hat{\mathbf{B}}$
- Take a magnetic field given in some coordinates.
- Replace these coordinates by some transformed coordinates.
- Multiply the resulted magnetic field by the matrix \mathbf{T} (given on the next slide).
- The given field is then given in terms of the original coordinates
- References
 - ▷ Stern, D. P., JGR, 1987.
 - ▷ Tsyganenko, N. A., JGR, 1998.

- $\hat{\alpha}(x, y) = \alpha(\hat{x}, \hat{y})$

Generalized Deformation Method

- Consider a transformation

$$\hat{q}_i = f_i(q_1, q_2, q_3)$$

- Let $\mathbf{A}' = \hat{\alpha} \nabla \hat{\beta}$

$$\Rightarrow \mathbf{A}' = \mathbf{M} \widehat{\mathbf{A}}; M_{hl} = \frac{\hat{h}_l}{h_h} \partial_h f_l$$

- Let $[\nabla \phi]' = \nabla \hat{\phi}$

$$\Rightarrow [\nabla \phi]' = \mathbf{M} \widehat{[\nabla \phi]}$$

- Let $\mathbf{B}' = \nabla \hat{\alpha} \times \nabla \hat{\beta}$

$$\Rightarrow \mathbf{B}' = \mathbf{T} \widehat{\mathbf{B}}; T_{ij} = \frac{1}{2} \varepsilon_{ihk} M_{hl} M_{kq} \varepsilon_{lqj}$$

- Let $\mathbf{E}' = -\partial_t \hat{\alpha} \nabla \hat{\beta} + \partial_t \hat{\beta} \nabla \hat{\alpha} - \nabla \hat{\phi}$

$$\Rightarrow \mathbf{E}' = \mathbf{M} (\widehat{\mathbf{E}} + \partial_t \widehat{\mathbf{q}} \times \widehat{\mathbf{B}})$$

- For deformed fields:

$$\square \mathbf{A}' \cdot \mathbf{B}' = 0$$

$$\square \nabla \cdot \mathbf{B}' = 0$$

$$\square \nabla \times \mathbf{B}' \neq 0, \text{ even if } \nabla \times \mathbf{B} = 0$$

$$\square [\nabla \phi]' \cdot \mathbf{B}' = 0, \text{ if } \nabla \phi \cdot \mathbf{B} = 0$$

$$\square \mathbf{E}' \cdot \mathbf{B}' = 0$$

$$\square \nabla \times [\nabla \phi]' = 0$$

$$\square \nabla \times \mathbf{E}' = -\partial_t \mathbf{B}'$$

Initial Dipole Fields

- In spherical coordinates (r, θ, φ) :

- Euler potentials: $\alpha \propto r^{-1} \sin^2 \theta$ and $\beta \propto \varphi$

$$\Rightarrow \mathbf{B} = \frac{\mu_0 m}{2\pi r^3} \cos \theta \mathbf{e}_r + \frac{\mu_0 m}{4\pi r^3} \sin \theta \mathbf{e}_\theta$$

$$\Rightarrow \mathbf{A} = \frac{\mu_0 m}{4\pi r^2} \sin \theta \mathbf{e}_\varphi$$

- Assume equipotential dipole field lines: $-\nabla \phi \cdot \mathbf{B} = 0$

$$\Rightarrow \phi(r, \theta, \varphi) = \phi_{is}(r_{is}, \theta_{is}(r, \theta), \varphi_{is}(\varphi))$$

- Dipole magnetic field lines

$$\Rightarrow (r_{is}, \sin \theta_{is}, \varphi_{is}) = (\text{constant}, \left[\frac{r_{is}}{r} \right]^{\frac{1}{2}} \sin \theta, \varphi)$$

- Assume an ionospheric electric field $\mathbf{E}^{is} = (E_\theta^{is}, E_\varphi^{is})$

$$\Rightarrow \mathbf{E} = -\nabla \phi = -\nabla \phi_{is} = \left(\frac{r_{is}}{r} \right)^{\frac{3}{2}} \left(-\frac{1}{2} \frac{\sin \theta}{\cos \theta_{is}} E_\theta^{is} \mathbf{e}_r + \frac{\cos \theta}{\cos \theta_{is}} E_\theta^{is} \mathbf{e}_\theta + E_\varphi^{is} \mathbf{e}_\varphi \right)$$

An Example: Dipole Expansion

- Dipole field (dash-dotted)
- $\alpha = \frac{\mu_o m_o}{4\pi r} \sin^2 \theta$
- $m \rightarrow m(r)$
- $\hat{r} = r H(r)^{-1}$
- $H(r) = a \left(1 - \tanh\left(\frac{r-r_o}{\Delta r}\right)\right) + c$
- $a = (1 - c) \left(1 - \tanh\left(\frac{r_{is}-r_o}{\Delta r}\right)\right)^{-1}$
- $m = m_o$, if $r = r_{is}$
- $m = cm_o$, if $r \rightarrow \infty$
- Expanded dipole (solid)
- \Rightarrow Ring current

Noon-midnight meridian

- Consecutive deformations:
- Dipole expansion (a)
- Field topology (b)
- Near-Earth plasma sheet (c)
- Dayside compression (d)
- Magnetopause and lobes (e)
- Tilt effect (f)

Model Construction (cont.)

Equatorial plane

- Last closed field lines:
- Dipole expansion (a)
- Field topology (b)
- Near-Earth plasma sheet (c)
- Dayside compression (d)
- Magnetopause and lobes (e)

SSC, April 06, 2000

- Solar wind pressure pulse
- Negative excursion of IMF B_z
- Dayside compression at 1640 UT

Magnetic Field

- GOES 8 located at noon close to the magnetic equator (see next slide)
- Measured field at GOES 8 (black)
- Modelled field (red)
- Magnetic field compression (B_Z^{GSM})

Magnetic Field (cont.)

- Polar located at noon close to the northern cusp (see next slide)
- Measured field at Polar (black)
- MHD model from GU-MICS (blue)
- Magnetic field compression (B_X^{GSM})
- Large deflection of B_Y^{GSM}

Magnetic Field Configurations

1630 UT Polar(Δ), GOES8 (\diamond)

1650 UT

Electric Field Configurations

- Static electric field at 1630 UT
- Corresponds to the mapped ionospheric convection
- Determined by deformation to the initial dipole potential field
- Δ = Polar, \diamond = GOES 8

Electric Field Configurations (cont.)

- Static electric field at 1650 UT
- \triangle = Polar, \diamond = GOES 8
- Field close to the Earth is due corotation (plasmashpere)

Electric Field Configurations (cont.)

- Induced electric field at 1640 UT
- Corresponds to the field lines motion
- Due to time-evolution of B_Y^{GSM}

Electric Field at Polar

Convection electric field, Polar (black), modelled (red), GUMICS (blue)

Electric Field at Polar (cont.)

Induced electric field, Polar (black), modelled (red), GUMICS (blue)

Electric Field at Polar (cont.)

Total electric field, Polar (black), modelled (red), GUMICS (blue)

