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Outline

Solar Eruptions:

— prominences
— flares and CMEs

Manifestations in the SW
— ICMEs (or magnetic clouds, MCs)

— IP shock waves
Some open questions

Main references:
— Antiochos (2005)
— van Ballegooijen (2005)




Prominences/filaments

* Prominences (a.k.a. filaments):
cool plasma (~ 10* K) embedded
in hot corona (~ 10° K) above
polarity inversion lines (PIL).

* B-fields provide support, and
insulate the prominence from the
hot surroundings.

* Prominences are non-potential
structures 1n the solar corona and,

thus, important for understanding
solar flares and CMEs.




Filament channels

_figure: van Ballegooijen (2005)
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* Filaments are located in
channels co-aligned

with chromospheric
fibrils

e Dextral channels:

— axial field to the right as

seen from the + polarity Ahe NNRNLL AN R I
region Dextral Sinistral

— filaments have right-bearing legs

e Sinistral channels:

— axial field to the left as seen from the + polarity region

— filaments have left-bearing legs



“Standard” model for explaining
filament observations

* Plasma supported by a
dip 1n a twisted magnetic

field

* Note, however:

- legs extend downward
from the main body of the
filament

~ plasma on inclined field - / _
lines T I
— support mechanism _ -

unknown figure: van Ballegooijen (2005) ™"




Solar eruptions

Occur in sheared filament channels
Non-potential field created above the PIL

— Strong field provides the necessary energy for
eruption

— Held down by the overlying coronal (potential)
field

Force balance breaks leading to an
explosive expansion of the field

- CME

Field reconnects below into a potential
structure

— flare

DeVore et al.

T. Forbes



Key observations of CMEs

Limb: Three-part structure
— Bright front
— Dark cavity
— Bright core

— Helical structures?

Disk: halo
Velocities 502500 km/s

Two main categories

— 1mpulsive: fast (> 400 km/s),
decelerating

— gradual: slow (<400 km/s),
accelerating




Key observations of flares

* Optical, radio, EUV, X-rays, SEPs

GOES Xray Flux (5 minute data)
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— narrow, slow CMEs; “X-ray plasmoids”

* Two-ribbon (or multi-ribbon) flares
— long duration (>10 min) events, arcades above PIL
— soft X-rays, seldom hard X-rays

— related to fast CMEs and erupting prominences
(disrupting arcades)




Impulsive X-ray flare (Yohkoh)
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Yohkoh X-ray Image of a Solar Flare, Combined Image in Soft X-rays (left) and
Soft X-rays with Hard X-ray Contours (right). Jan 13, 1992,



Gradual flares (Trace)




Models for CME Initiation

* Reconnection models (Resistive):
— Sheared 3D arcade topology (but not essential)
— Reconnection removes overlying field
— Tether-cutting: reconnection inside filament channel
— Breakout: reconnection outside filament channel
* Needs multi-polarity system
* Twisted flux rope models (Ideal):
— Twist 1s essential to pre-eruption topology
— Generally bipolar polarity region (not essential)

— Ideal (kink-like) instability/loss-of-equilibrium moves aside overlying
field

Antiochos (2005)



Breakout model (Antiochos et al)

Multi-polar field & foot-point shear

Reconnectlon removes overlymg ﬂux
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Twisted Flux Rope Model
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* Bipolar field with some process to form
twisted rope

* Rope lifts/kinks for some critical twist,
overlying field moves aside
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. s Gibson et al. (2004, “flux emergence”)
Amari et al. (2003, “flux cancellation™)



Flux emergence model of
Amari et al. (2004)
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Interplanetary CMEs, E
magnetic clouds (MCs)

* CME flux ropes
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Coronal and
interplanetary shocks

Fast CMEs super-fast-magnetosonic
=> drive fast-mode shock waves
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Some challenges for future

* Relation between flares, CMEs, coronal shocks and SEPs

— Where does the radio burst come from
e blast-wave vs. driven shock
— How does the shock propagate through corona (refraction)

* EIT waves vs. shocks
— Where and how are SEPs accelerated (Arto tells more)

* Three-part structure vs. ICMEs

* How to get to the extremes

— shearing, twisting and flux emergence loads the corona with magnetic
energy, but how do you get a fast enough eruption?



